Podcast 145 - Bones and Hard Parts

P1010025.JPG

The gang discusses two papers that deal with the origins of biomineralization (how living things make hard minerals to serve as skeletal structures). Specifically, we look at one paper focused on the origins of bone and a second paper focusing on some of the first instances of biomineralization in the fossil record. Also, Curt keeps a promise, James knows how to make a good impression on the neighborhood, and Amanda gets blamed for the actions of her cats.

Up-Goer Five (Amanda Edition):

 Today our friends talk about things that have hard parts before there were supposed to be hard parts and how important hard parts that are inside of animals first was made. Very early animals that have hard parts before there were supposed to be hard parts are the same as things that do not hard parts. This paper says that it is because the place that they lived had too much of stuff that makes parts hard. These animals took the stuff out of water not because they wanted to, then they had to make it go away or they would die. So they made parts of their body hard. Later on making parts of the body hard was really important and they started doing it more and more even if there wasn't too much stuff in the water that makes parts hard. The second paper talks about how a weird type of hard part that is one of the important hard parts inside animals came to be. Some people think it is a new type of hard part inside of animals, but others say it is not. It turns out it is actually not really new like we thought but is actually a type of important hard part inside animals that is still around today. It is just a type that is not around today anymore.  

References:

Wood, Rachel, Andrey Yu Ivantsov, and Andrey Yu Zhuravlev. "First macrobiota biomineralization was environmentally triggered." Proc. R. Soc. B 284.1851 (2017): 20170059. 

 Keating, Joseph N., et al. "The nature of aspidin and the evolutionary origin of bone." Nature ecology & evolution(2018): 1. 

Podcast 144 - Return to the Sea

Nothosaurus.jpg

The gang discusses two papers that investigate the ways that tetrapods return to the sea. It's another opportunity for Amanda talk at length about her favorite topic, CONVERGENCE. Meanwhile, James has ideas about "moral fortitude", Curt makes slightly off references to 80s films, Amanda exercises her desire to be deadly, and Mr. Jowls has some opinions that need to be heard.

 

Up-Goer Five (Amanda Edition):

 

 Today our friends talk about animals with four feet that go back to the water. This is just a reason for our friends to talk about why some animals that are not very close like brothers look very much the same. The first paper says that since the start of the time of large animals with no hair and big teeth, there are more animals with four feet that go back to the water. Many of the animals with four feet that go back to the water look so very the same it is sometimes hard to tell that they are different if you do not look close. They talk about things that make these animals with four feet that go back to the water better for being in water, and how whole big groups of animals do not all change the same, but small groups change faster or more than others. They also talk about how and why these animals are changing. The second paper is about an animal with four feet and a long neck that goes back to the water. It has funny teeth and did not eat very small things like the largest animals living today that have no teeth, even though some things about this animal with four feet and a long neck that goes back to the water that might make you think that they ate very small things. It also has very heavy inside hard parts like big heavy water animals that get hit by people in wood things that go fast. This makes it heavy in water so it does not stay on top of the water but goes down to the bottom. This is how it ate food maybe.   
 

References:

de Miguel Chaves, Carlos, Francisco Ortega, and Adán Pérez-García. "New highly pachyostotic nothosauroid interpreted as a filter-feeding Triassic marine reptile." Biology Letters 14.8 (2018): 20180130. 

 Kelley, Neil P., and Nicholas D. Pyenson. "Evolutionary innovation and ecology in marine tetrapods from the Triassic to the Anthropocene." Science 348.6232 (2015): aaa3716. 

Podcast 143 - Squamate Talk

Japanese_five-lined_skink-3.jpg

Well, it has finally come to this. After almost 150 episodes under our belts, we've finally produced a podcast where almost no one read any of the papers. This episode was supposed to be about squamate (lizards and snakes) evolution. In particular, we were supposed to look at two papers that tried to determine when squamates must have first diversified. And... we kind of accomplish that. Meanwhile, James shares his weak points, Amanda demonstrates a super power, and Curt laments falling asleep on the couch being the only person to read these papers. We swear the next one will be better.... maybe.

 

Up-Goer Five (Curt Edition):

Our friends were supposed to talk about these papers that they read. However, they didn't read these papers and so they spend some of the time trying make it up as they go along. The papers that the friends were supposed to read were about cold, cute things with dry skin and four legs (most of the time). Both of these papers suggest that these cold, cute things probably came about well before we thought they did. In fact, we probably had the first cold, cute things just around or before the time a really bad thing happened that hurt all living things around the world. It was the worst of the bad things to have ever happened. These papers suggest that these cold, cute things might have done alright during these really bad times, and that may be the reason why there are so many cute, cold things around the world today.

 

References:

 Tałanda, Mateusz. "An exceptionally preserved Jurassic skink suggests lizard diversification preceded fragmentation of Pangaea." Palaeontology (2018). 

 Simões, Tiago R., et al. "The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps." Nature 557.7707 (2018): 706. 

Podcast 142 - The LDG

Map_latitudinal_gradient_of_biodiversity_mannion_2014.png

The gang discusses two papers that look at the origins of the latitudinal diversity gradient, the tendency for higher species diversity in the tropics and lower diversity closer to the poles. Specifically, these studies use comprehensive phylogenetic analyses of modern taxa to try and determine if the current diversity gradient is caused by increased speciation or decreased extinction at the equator. Meanwhile, Amanda shares diseases with her cat, James decides to "treat" himself to a Lime-A-Rita, and Curt just re-enacts scenes from other media.

 

Up-Goer Five (James Edition):

The group looks at two papers that are interested in where animals live. They are looking at a well known thing where more animals live near the middle of the world than at either end. However, it is not clear whether there are more animals in the middle of the world because they have been there longer and so the number of animals has just built up over time, or whether animals in these areas make more types of animals more quickly.

The first study looks at animals that have no legs and live in the water that you can not drink and breath water. This study finds that animals that live in the middle of the world actually make other animals slower than animals that live at either end of the world do, so the reason there are more animals in the middle of the world is probably because they have been there longer. The second study looks at animals with hard outer skin that have six legs and live in big families. This study finds that there is no change across the world in how quickly these animals make more animals, which is different from the first study. However, this does mean that the reason there are more animals in the middle of the world is because they have been there longer, so this agrees with the first study!

 

References: 

 Economo, Evan P., et al. "Macroecology and macroevolution of the latitudinal diversity gradient in ants." Nature communications 9.1 (2018): 1778. 

 Rabosky, Daniel L., et al. "An inverse latitudinal gradient in speciation rate for marine fishes." Nature (2018): 1. 

Podcast 141 - Save the Weasels

I_Am_Weasel_(15483000477).jpg

The gang discusses two papers that look at the effects of climate change on cold adapted species, as well as the possibility of evolutionary rescue as a means of preserving this biodiversity. Also, it gives them all a great excuse to just talk about weasels (and somehow badgers as well). Meanwhile, Curt invents alternative Nintendo canon, James wants a giant robot spider body, and Amanda invents personalities for pictures of weasels.

 

Up-Goer Five (Amanda Edition):

 

Today our friends talk about how when things get warm it is bad for lots of things that live. Our friends look at long things with hair that need to eat more. These long things with hair that need to eat more are either dark or white. They are white when it is cold and dark when it is warm and that helps them hide. But with things turning more warm every year, it is getting too different for these long things with hair that need to eat more. Now sometimes they change from dark to white when it is still too warm, or, more often, they are still white when it is time to be dark. One paper says that this means the long things with hair that need to eat more get eaten more often by big things with big teeth and pointed fingers and hair, or by big things that fly that have no teeth and pointed fingers and no hair. The other paper says that maybe we need to look at some parts of the world that no one cares about and save them for animals, because these are places where the long things with hair that need to eat more that change color from dark to white and back to dark may be able to live.

 

References: 

 Atmeh, Kamal, Anna Andruszkiewicz, and Karol Zub. "Climate change is affecting mortality of weasels due to camouflage mismatch." Scientific reports 8.1 (2018): 7648. 

 Mills, L. Scott, et al. "Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change." Science 359.6379 (2018): 1033-1036. 

Podcast 140 - Staying on Ecomorphic Brand

Crioceratites_nolani_France_450_mm.jpg

The gang returns to a favorite topic, the link between morphology and ecology. Specifically, they look at two studies that use the morphology of ammonites and early fish as a proxy for ecological complexity. Also, James enjoy controlling giant robots, Curt considers the impact of branding, and Amanda tries a new 14% beer with all of the expected consequences. So enjoy as we get completely sidetracked talking about feet, eating zoras, how Amanda is secretly Tien from Dragon Ball, Warhammer 40k, and Deadpool. So, it’s one of those podcasts. <EDITOR’S NOTE: Actual science talk starts at roughly 16 minutes in>

 

Up-Goer Five (Curt Edition):

Our friends talk about two papers that look at the way things look and how that changes what you can do to live. The first paper looks at things with long arms and hard covers that move through the water. The paper talks about how old things with long arms are the same and different to things with long arms that live today. It also looks at how these things with long arms change how they look and what they do as they get older. The paper shows that the old things often changed how they looked and do very different things as they got older. Also, the older things with long arms are doing things that are very different from the new things with long arms.

The next paper talks about other things that move through water and are good to eat. It looks at the mouths of these things that are good to eat to see if the mouths have become more different over time. Some people think that the mouths might have become different very early on, while other people think the mouths slowly got more different over time. This paper says that the mouths in the past were probably not as different as the mouths today, since a new group of things that are good to eat has appeared that have very very different mouths.

 

References:

 Walton, Sonny A., and Dieter Korn. "An ecomorphospace for the Ammonoidea." Paleobiology 44.2 (2018): 273-289. 

 Hill, Jennifer J., et al. "Evolution of jaw disparity in fishes." Palaeontology (2018). 

Podcast 139 - Whales and Birds Suck

NP016056-Alkekonge-HS.jpg_1457025819.jpg

The gang discusses two papers on suction feeding among tetrapods, the process by which animals take in water to pull food into their mouths. Specifically they look at two papers showing suction feeding strategies in fossil whales and in modern auks. Meanwhile, Amanda finds new ways to become ill, James finds new things to get angry about, and Curt makes new, very unfortunate deviant art searches.

 

Up-Goer Five (James Edition):

The group look at two papers that deal with animals that suck. The first paper is looking at how animals with hair that live in the place where water can not be drunk got big. One of the thing that these really big animals share is that they eat lots of little food all at once by pushing it through a brush, and it is thought that they got big because they could push so much food through their brush at once that they could eat lots and lots. The study looks at the hard parts of a really old hair covered water animal that got very big, but it does not have the brush and so could not eat lots of small food. Instead, it seems like the animal would have got its food by sucking, and ate lots of food that was not too big but not too small instead by sucking it into their mouth and then pushing the water out. This shows that these animals could get big without pushing lots of small food through a brush, and that the brush pushing eating might have come from sucking first.

The second paper takes small animals that can fly and live on the big water that you can not drink and sees how they ate. These animals eat very small animals as their food and people have looked inside them and found out that they would need to eat a lot of these small animals in order to live. It was said that these flying animals must have eaten lots of small animals at once by pushing them through a small space like a brush like the really big animals that live if the big water you can not drink do, however no one has ever seen these flying animals eat. The study takes some of these flying animals and keeps them in a room with lots of water for a while that is full of their food and watches how they eat. It turns out that these flying animals suck too, and they suck up their small food by seeing them and sucking them in one or a few at a time. This sucking is just like the sucking that the old really big animal with hair and no legs would have done. This also suggests that the flying animals do not need to eat quite as much as the people that looked inside them thought.

 

References: 

Enstipp, Manfred R., et al. "Almost like a whale–First evidence of suction-feeding in a seabird." Journal of Experimental Biology (2018): jeb-182170. 

 Fordyce, R. Ewan, and Felix G. Marx. "Gigantism precedes filter feeding in baleen whale evolution." Current Biology(2018). 

Podcast 138 - Cambrian Food

Russian_Cambrian_Trilobite-Yacutus-ln-31-2.jpg

The gang discuss two papers that use various lines of evidence to try to determine what Cambrian animals (particularly trilobites) might have eaten. Which of these animals were detritivores or coprophagous, and which animals might have been active predators? Meanwhile, James tries to keep a schedule, Amanda finds a way to time travel 10 minutes, and Curt fights against nature.

 

Up-Goer Five (Amanda Edition):

Today our friends talk about very old things with no inside hard bits that ate shit and also how stomachs grow in cute round hard animals with lots of parts. The papers look at very old times and how all things are put together living in the same place and how they all work together in this place and time. At first our friends talk about pieces of shit that show how very old things with no inside hard bits ate food and how that means they fit into this place and time. The shit is found in the ends of where the very old things with no inside hard bits lived. There are other animals found with the shit that might be eating the shit or also might be part of the shit, meaning that the very old things with no inside hard bits ate them. They also say that these pieces of shit that have a different kind of animal that has not been well known until not long ago means that these different animals were more like a good-to-eat animal than a not-good-to-eat animal. One of our friends falls asleep but it is not because the paper is not fun. Then our friends talk about how the head-stomach gets bigger in these cute round animals with lots of parts. They think a bigger head-stomach means that these cute round animals with lots of parts ate other animals and not just stuff on the ground. 

 

References:

Lerosey‐Aubril, Rudy, and John S. Peel. "Gut evolution in early Cambrian trilobites and the origin of predation on infaunal macroinvertebrates: evidence from muscle scars in Mesolenellus." Palaeontology (2018). 

 Kimmig, Julien, and Brian R. Pratt. "Coprolites in the Ravens Throat River LAGERSTÄTTE of Northwestern Canada: Implications for the Middle Cambrian Food Web." Palaios 33.4 (2018): 125-140. 

Podcast 137 - Sloth vs Sloth

368257114_9e5e2c3552_b.jpg

The gang discuss several papers that detail the changes necessary for a terrestrial tetrapod to  transition into aquatic marine lifestyle. They focus on two examples, fossil sloths and fossil crocodyliforms. Also, James discusses some unconventional forms of hydraulic fracking, Curt imagines the sloth action film, Amanda details her plans to get "swole", and everyone has a lively "debate" on the correct pronunciation of the word sloth.

 

Up-Goer Five (James Edition):

This week the group look at two studies of groups of animals that have moved into the big water that is full of little rocks that make food great but are bad for you if you have too much and also make it really hard for animals that are not used to it to live in the water. The first group are angry animals without hair that are around today and usually live in water that is found on land, but a long time ago some of them moved into the bit water full of little rocks. These angry animals began to change from the ones that live in the land water, and their land feet turn into water feet and their back end grows to be like a water animal's back end usually looks like. The study looks at the left overs of animals from a long time ago that show what parts of the inside of the head looked like. These show that once they moved in to the big water they grew little balls in their head that let them deal with the little rocks that are all in the big water. This shows that they spent all their time in the big water and did not go back to the land water, and that they could eat food that lived in the big water without dealing with the small rocks, such as small animals with no hard parts that had many arms. The second group are big animals with hair that are very slow today. While these slow animals are small today and live in trees, in the past they could be big and one group of them went to live in water. The study looks at the hard parts that keep the animals from falling over and found that once they move into water, the hard parts start to fill up and get more heavy. The study looks at the hard parts of other groups that go back into the water and find that they make their hard parts heavy too.

 

References:

 Fernández, Marta, and Zulma Gasparini. "Salt glands in the Jurassic metriorhynchid Geosaurus: implications for the evolution of osmoregulation in Mesozoic marine crocodyliforms." Naturwissenschaften 95.1 (2008): 79-84. 

 Fernández, Marta, and Zulma Gasparini. "Salt glands in a Tithonian metriorhynchid crocodyliform and their physiological significance." Lethaia 33.4 (2000): 269-276. 

 Amson, Eli, Guillaume Billet, and Christian de Muizon. "Evolutionary adaptation to aquatic lifestyle in extinct sloths can lead to systemic alteration of bone structure." Proc. R. Soc. B 285.1878 (2018): 20180270. 

Podcast 136 - The Haunted Podcast Returns

800px-Dinornis1387.jpg

The gang discusses coprolites (fossil feces) and the interesting information that we can glean from them. Specifically, they talk about two papers which look at moa coprolites from New Zealand to determine aspects of the New Zealand ecology before human intervention. But the powers of the internet conspire to destroy our intrepid podcasting trio, ultimately claiming Amanda's internet for nearly half of the episode. Can James and Curt survive having to talk to each other for a whole 30 minutes? Tune in to find out.

 

Up-Goer Five (Curt Edition):

Today the friends talk about shit. Yes of all the words for what comes out of your bottom, the only one of them that we can use in this write up is shit. Think about that. What does that mean about us? As a people? As a world?

Anyways, there is a lot we can learn from shit. The friends look at how shit from large angry things that are brother and sister to things that could fly can tell us about the world these angry things lived in. These large angry things are now dead. But we still have a lot of their shit lying around, and we can use it to find out what they ate. What they find is that these angry things might have ate some things that help green things which make food from the sun to grow, but they probably did not move those green things around in their shit. They also find that there were animals that lived in the angry things which died when the angry things died. All in all, it turns out there is a lot that shit can tell us.

 

References: 

Carpenter, Joanna K., et al. "An avian seed dispersal paradox: New Zealand's extinct megafaunal birds did not disperse large seeds." Proc. R. Soc. B 285.1877 (2018): 20180352. 

 Boast, Alexander P., et al. "Coprolites reveal ecological interactions lost with the extinction of New Zealand birds." Proceedings of the National Academy of Sciences (2018): 201712337. 

Podcast 135 - Competing Convergences

Smilodon_head.jpg

The gang discusses a few papers that illustrate how different evolutionary processes can generate very similar morphological structures. Yes, we're talking about convergence again. But this time, things get kind of weird in the second half. Meanwhile, Amanda wrestles with the love of her cats, Curt understands his place in the group, and James invents a brand new way for birds to fly.

 

Up-Goer Five (Amanda Edition):

Today our friends talk about things that are not close but look a lot like each other. The first part is about animals that eat other things that are living. They say that sometimes it is the world around things that make them look like each other. Sometimes it is things like how much rain there is or how fast they grow up. So it is not always the fact that they all eat the same thing. But it might be. More things need to be done to see more about animals that eat other things. The second part is about things that fly and have no teeth, but also big angry animals with big teeth and no hair. They say that there is a part of where the leg ends that points behind that has parts that make the back part of the animal move, and that it is part of how the big angry animals with big teeth and no hair breathe. But they don't say how they figure this out very well. They confuse our friends. Then they say that this part of where the leg ends that points behind and the parts that make the back part of the animal move are important because they help the animals that can fly with no teeth fly the best of any big animal that can fly. They say it is important for the animals that can fly with no teeth to jump up when they fly. Our friends do not agree.

 

References:

Tseng, Z. Jack, and John J. Flynn. "Structure-function covariation with nonfeeding ecological variables influences evolution of feeding specialization in Carnivora." Science advances 4.2 (2018): eaao5441. 

 Macaluso, Loredana, and Emanuel Tschopp. "Evolutionary changes in pubic orientation in dinosaurs are more strongly correlated with the ventilation system than with herbivory." Palaeontology (2018). 

Podcast 134 - Training Fish in the Hyperbolic Time Chamber

Goby over 9000.png

The gang discusses two papers that look how the environmental stresses caused from warming temperatures can affect fish. Specifically, we look at a paleontological study focusing on the Permian and Late-Triassic extinctions (often considered to be runaway greenhouse scenarios) as well as a modern study looking at the impact modern global climate change might have on goby fishes. Also, James offers to train Amanda, Curt starts a brand new business venture, and Amanda decides to pump pure sugar into her veins. Also, apologies for the fact that James has finally finished Dragon Ball Z and naturally keeps finding patterns.

 

Up-Goer Five (Curt Edition):

The friends talk about papers that show how changes around the world can cause animals that move through the water and breathe water to die. The first paper talks about animals that move through the water and breathe water that died a very long time ago, during a time when nearly everything died. During this time when nearly everything died a lot of really bad things happened, like the world got a lot warmer and the water became hard to breathe. During this time, it appears that some of the animals that move through the water and breathe water actually did really well, while almost all of the other animals living in the water did really bad. The animals that did really well would eventually become a family we see today that has big teeth, eats a lot, and has soft parts inside. The paper says that maybe the way these animals lived help them get through this bad time when nearly everything died.

The second paper looks at animals that move through water and breathe water which are around today, and how these animals are being hurt by how much warmer it has been getting each year. They took some of these animals and raised them for a year in a warm home. Then they took the animals and made it warmer and saw if the animals were happy. When the animals got sad, they stopped and looked at how warm it got. They found that lots of things changed how warm the animals could get before they got sad. Animals that were brother and sister got sad in the same kinds of ways. Also, how warm the animals got in the year of training changed when the animals got sad. They showed that there were a lot of things to consider when we want to know how warm these animals can get before they become sad.

 

References:

 Vázquez, Priscilla, and Matthew E. Clapham. "Extinction selectivity among marine fishes during multistressor global change in the end-Permian and end-Triassic crises." Geology45.5 (2017): 395-398. 

 Di Santo, Valentina, and Phillip S. Lobel. "Body size and thermal tolerance in tropical gobies." Journal of experimental marine biology and ecology 487 (2017): 11-17. 

Podcast 133 - Long-Standing Pathologies

IMG_20180323_122405.jpg

The gang discusses the various ways that injuries and diseases can be preserved in the fossil record, as well as the information these pathologies can give us on ancient biodiversity and behavior. Also, Amanda is coerced into accepting a delivery, James discusses the ways in which he sizes up the world, and Curt makes cutting comparisons between fictional and real life characters.

 

Up-Goer Five (Amanda Edition):

Today our friends talk about things that do not look right because the animal is broken or sick. First our friends talk about animals that are good to eat that have many arms. Some of these animals that are good to eat that have many arms are very old and do not live anymore. These animals that are gone have a rock inside their body that used to be on the outside but is now on the inside. One of these animals that are good to eat that have many arms has one of these rocks inside them and the rock has been hurt. We can look inside the rock where it has been hurt and see that it is not full of rock. We think that this rock was hurt by a little animal with many legs and a soft body that often makes water animals today sick or hurt. We think that this little animal with many legs and a soft body might have made this animal that is good to eat with many arms so sick it could not eat and died. Second our friends talk about an animal with four short legs and no hair. This animal with four short legs and no hair has a long behind. This long behind can sometimes fall off and the animal is fine. A big angry animal will eat the the behind and leave the animal with four short legs and no hair alone. Our friends talk about a very old animal with four short legs and no hair that had a behind that could fall off. It is the same as some living animals with four short legs and no hair, but it is also not the same. But it means that maybe the very oldest of these animals with four short legs and no hair could leave their behinds for big angry animals to eat, and they could run away and be safe, and so this thing that these animals can do is not a new thing but an old thing that has been around a long time, and not being able to do it is the new thing. 

 

References:

LeBlanc, A. R. H., et al. "Caudal autotomy as anti-predatory behaviour in Palaeozoic reptiles." Scientific reports 8.1 (2018): 3328. 

 Hoffmann, René, et al. "A Late Cretaceous pathological belemnite rostrum with evidence of infection by an endoparasite." Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen287.3 (2018): 335-349. 

Podcast 132 - We've Been Doing This For Five Years

CapetusDB241.jpg

The gang spends their 5th anniversary podcast discussing the evolution and distribution of early tetrapods. So basically, we messed up. But at least you can enjoy some insightful discussions about how to improve Sabrina the Teenage Witch. That's something, right?

 

Right?

 

Up-Goer Five (James Edition):

The group forget and barely care about their day which comes around every year for five times now. This time they talk about animals with four legs at around the time where they just got out of the water and lived on land before a lot of them died when the things that are not animals and are green and make air went away and everything got less wet.

The first paper looks at when these wet areas went away and whether these early animals with four legs ended up with fewer animals that are found over a wider area or lots of animals that are each found in only one area each. It had been though that this change in how much wet made these animals got moved into lots of small areas, but the new paper shows that actually animals with four legs got a lot moved to much wider areas, but that this is because the animals with four legs that lived in water became much less easier to be found while animals with four legs that live on land and have balls that their babies live in early on that don't need water take over and change how animals with four legs lived on the big ball of rock we live on.

The second paper looks at where animals with four legs lived before and after the bad time where almost all life died. The paper is interested at whether more animals lived on the middle of the outside of the big ball of rock that we all lived on or whether more of them lived near the top or the bottom of the outside of the big ball of rock. The paper is looking at whether there really is a time where animals with four legs do not live at the middle of the big ball of rock during the bad times where everything was dying. The paper looks at this by seeing how much the rocks lie to us and hide animals that were really there. One way they do this is by looking at tracks as well as dead bodies. This leads to shouting but both people are right and it is okay. The paper shows that while there was some time where there were less animals with four legs in the middle of the big ball of rock, they were still there and so maybe there were just less of them than before but they were not all dead.

 

References:

 Dunne, Emma M., et al. "Diversity change during the rise of tetrapods and the impact of the ‘Carboniferous rainforest collapse’." Proc. R. Soc. B. Vol. 285. No. 1872. The Royal Society, 2018. 

 Bernardi, Massimo, Fabio Massimo Petti, and Michael J. Benton. "Tetrapod distribution and temperature rise during the Permian–Triassic mass extinction." Proc. R. Soc. B. Vol. 285. No. 1870. The Royal Society, 2018. 

 

Additional music by Russell Watson used in accordance with fair use under the creative commons license. Music was modified from its original form.

https://creativecommons.org/licenses/by-nc-sa/2.5/

Podcast 131 - Would Sauropod Ribs Be Tasty?

ChP6PQkUkAAIq1j.jpg_large.jpg

The gang discusses two papers that look at the complex evolutionary history of sauropod dinosaurs. In particular, these papers try to determine how sauropods geography might have affected their evolutionary history. Also, James learns some valuable lessons about hot tub safety, Curt mindlessly quotes Futurama, Amanda discusses the surprising skills of her cats, and everyone has a deeply disturbing realization about the Flintstones.

 

Up-Goer Five (James Edition):

This week the group looks at two papers that focus on big stupid angry animals with no hair. Both papers are looking at the type of big stupid angry animals with no hair that were very big and had thick legs and really long necks. The papers are interested in where the big angry animals with really long necks lived, and how where they lived change over time.

The first paper looks at a new big angry animal with a long neck from the place where food is big and people are armed. The reason this animal is interesting is because it is part of a group that was thought to all be dead but the new animal shows that they lived longer than we thought. All the older animals in its group came from a long way away, and so this animal shows that the group lived longer than we thought and that they did so by moving into a new place.

The second paper also looks at a big angry animal with a long neck from the hot place with the long water running through it. This animal is part of a group we find on lots of other places, but not here. This animal shows that the group made it into the very large land where the rains are, even though a different group of animals with very long necks are usually there.

 

References

 Sallam, Hesham M., et al. "New Egyptian sauropod reveals Late Cretaceous dinosaur dispersal between Europe and Africa." Nature ecology & evolution (2018): 1. 

 Royo-Torres, Rafael, et al. "Descendants of the Jurassic turiasaurs from Iberia found refuge in the Early Cretaceous of western USA." Scientific Reports 7.1 (2017): 14311.