Podcast 226 - Insert Fleetwood Mac Tusk Joke Here

The gang discusses two papers that look at the evolutionary history of unique teeth. The first paper looks at the history of tusks and tusk-like structures in synapsids, and the second paper looks at the shape of ancient bird teeth. Meanwhile, James gets to the point, Curt is inspired, and Amanda has a drink.

Up-Goer Five (James Edition):

The group looks at two papers that talk about teeth in different groups of animals. The first paper is interested in big teeth that keep growing and don't have a hard cover around them. While these teeth without a hard cover that don't stop growing are usually only found in animals with hair, one group that is part of the same family but much older also has teeth that seem to get big and never stop growing. However it turns out that many of them still have the hard covering, and only some of them lose it to be like the animals with hair today that have long teeth without a cover that doesn't stop growing. The other paper is looking at animals that fly and usually don't have teeth, but that are very old and so do have teeth. They look at the types of these old teeth to see whether they can tell us what these animals ate. It turns out that it is very hard to tell what these animals ate from their teeth, and it seems that other things like the type of face they have may be more important.

References:

Zhou, Ya-Chun, et al. "Evolution of tooth crown shape in Mesozoic birds, and its adaptive significance with respect to diet." Palaeoworld (2021).

Whitney, M. R., et al. "The evolution of the synapsid tusk: insights from dicynodont therapsid tusk histology." Proceedings of the Royal Society B 288.1961 (2021): 20211670.

Podcast 225 - Columbo Meets the Caiman

The gang discusses two papers that look at how trace fossils can give important clues to ancient ecological interactions. The first paper identifies a unique behavior using trace fossils, and the second paper uses bite marks on bone to infer ontogenetic ecological shifts in a large caiman species. Meanwhile, Curt investigates, Amanda collects, and James fixates.

Up-Goer Five (Amanda Edition):

This week our friends talk about animals that roll in wet tiny pieces of rock that are really very tiny tiny. We also talk about a very big very slow animal with hair that got bit by a very large animal with no hair but hard skin and lots of big teeth that has a very long face. The animal with hair that rolled in wet tiny very very tiny pieces of rock shows that these animals did this thing a very long time ago; it shows that these animals with hair and two fingers on each leg were in this place at this time, along with animals with stuff that wasn't hair but made of the same stuff as hair and could fly, too. The second paper looks at how we can talk about a hard part of a very big very slow animal with hair could have gotten grabbed by a small one of a very, very, very big animal with no hair but hard skin and lots of big teeth with a very long face. It tells us that these very big animals with no hair but hard skin and lots of big teeth ate different things when they were small than when they were very, very, very big.

References:

Abbassi, Nasrollah, et al. "Vertebrate  footprints and a mammal mud-bath trace fossil (Laspichnia) from the  Mukdadiya Formation (Late Miocene–Pliocene), Chamchamal Area, Kurdistan  Region, Northeast Iraq." Ichnos 28.1 (2021): 72-83.

Pujos, François, and Rodolfo  Salas-Gismondi. "Predation of the giant Miocene caiman Purussaurus on a  mylodontid ground sloth in the wetlands of proto-Amazonia." Biology Letters 16.8 (2020): 20200239.

Podcast 224 - Second Times the Charm

Random computer glitches are unable to stop the gang from delivering another podcast! This week, they focus on two papers that look at the importance history for understanding trends in our modern biosphere. The first paper discusses how speciation trends are important for planning future conservation efforts, and the second paper looks at the importance of exaptive traits (characters evolved for one purpose but used for another) in the evolutionary history of sea snakes. Meanwhile, Amanda cuts deep, Curt has done this before, and James waits for his time to tell his very good joke.

Up-Goer Five (Curt Edition):

Our friends talk about how the past is important. And this is funny because they already did this before but the big boxes with bits that will shock your hand if you touch them lost the talk they did about the past being important so they are doing it again. The first paper they look at is short. It is about how animals living in places that are high up but in warm places make new types of animals that stay at the same high up place, not higher or lower. This means new animals will more often be living the same types of places as the older animals they came from, and this means that as places change we need to make sure the types of places where these animals live can stay open.

The second paper looks at how long animals without legs moved into the water. There are many groups of animals without legs that moved into water, and this paper wants to know the types of places they were in before they moved into water and also if the things they all have that make it easier to be in water were things that appeared before they moved into water (letting them move in there) or after they moved into water (making it better to be in water). They find that most of these groups started in areas with trees before moving into water. They also find that the things which make it easier to be in water appeared in older groups well before these animals moved into water. This means that the things that made it easy to go in water appeared first, and then this made it so these animals could then move into water.

References:

Linck, Ethan B., et al. "Evolutionary conservatism will limit responses to climate change in the tropics." Biology Letters 17.10 (2021): 20210363.

Gearty, William, Elsie Carrillo, and  Jonathan L. Payne. "Ecological filtering and exaptation in the evolution  of marine snakes." The American Naturalist 198.4 (2021): 506-521.

Podcast 223 - Amanda Loves Watership Down

The gang discusses two papers that look at the impact of ecological interactions on the evolutionary history of groups. The first looks at potential competitive interactions that could control rabbit body size, and the second paper uses the fossil record to investigate potential clade interactions between two groups of bryozoans. Meanwhile, Curt researches in real time, Amanda gets to talk about a childhood favorite, and James makes future plans.

Up-Goer Five (Curt Edition):

Our friends talk about two papers that look at how animals trying to get food and sometimes fighting with each other can change how they live and grow and make more of themselves. The first paper looks at animals that jump and have hair and their name sounds just like hair. These things that sound like hair do not get really big in most cases, even though we know that they could get big if we try and make it happen. This paper looks for reasons why these "hairs" don't get very big. It turns out that "hairs" eat things that a lot of other animals that eat. And while there are a lot of other things in the paper here that help to build this idea, the big idea is that that how big these "hairs" get may be held back by the smallest of the other animals that eat their food. "Hairs" get about as big as the smallest of these other animals in a place.

The second paper looks at animals that grow on top of other things. There are two big groups of these animals, and when we look at how they grow, usually one group will grow over the other group. This means this one group is better at growing in a space and can push out the other group. In the past we used to have more of the group that gets pushed out, but over time we have more of the new group that is better at growing in a place. Some have thought maybe this means that what we see happening in small places may explain this larger change over time. But it is more than just that because it is not just one group going down and another going up. This paper uses a lot of number work to see how these two group may change each other. They find that it is more than just a simple one up one down thing. They find both groups change each other in a few ways. They also don't find that the things happening in the small spaces is causing these bigger changes. It could be because of the type of things we are looking at makes it harder to see these changes, but with what they have it looks like maybe this is not what is causing this change.

References:

Tomiya, Susumu, and Lauren K. Miller. "Why aren't rabbits and hares larger?." Evolution 75.4 (2021): 847-860.

Lidgard, Scott, et al. "When fossil clades ‘compete’: local dominance, global diversification dynamics and causation." Proceedings of the Royal Society B 288.1959 (2021): 20211632.

Podcast 222 - Static Hiss

Shark_-_opening.jpg

The gang discusses two papers that look at evolutionary changes in animal groups after the End Cretaceous Mass Extinction. The first paper looks at morphometric changes in shark teeth, and the second paper studies the evolutionary and biogeographic patterns of snakes. Meanwhile, Amanda “fixes” her audio, Curt goes biblical, and James is missing.

Up-Goer Five (Curt Edition):

Our friends talk about things that lived through a real bad time when a huge rock hit the big round place where we all live. The first paper looks at large angry animals that move through water and have pointed things in their mouths and soft bits where things have hard bits. We usually just find the hard pointed bits from the mouth because the rest of the body falls to bits when they die. So this looks at how these old hard bits change from before and after the big rock hit. What they found was that changes happened within groups, where some groups were hit hard and others were not. But if you look at all of the big angry animals, it looks like very little changes. The hard bits are doing things that look the same before and after the rock hit, but its different groups doing that.

The second paper looks at animals with no legs and looked at changes in where they live and how quickly they change over time. The paper finds that after the big rock hit, one group was able to move to a new place. This move seems to happen when they also start making more of themselves. It seems that, for this big group of animals with no legs, the big rock hitting may have helped this group. It seems like a new place opened up after the big rock and the group took over and did well. There are also changes that we see when it gets colder in the time way after the rock hit.

References:

Klein, Catherine G., et al. "Evolution and dispersal of snakes across the Cretaceous-Paleogene mass extinction." Nature Communications 12.1 (2021): 1-9.

Bazzi, Mohamad, et al. "Tooth morphology elucidates shark evolution across the end-Cretaceous mass extinction." PLoS biology 19.8 (2021): e3001108.

Podcast 221 - Ramble On

Change_in_Average_Temperature.svg.png

The gang discusses two papers that look at patterns of speciation and extinction and relate those patterns to shifts in climate. The first paper looks at how both plate tectonics and climatic changes have contributed to shifts in provinciality, and the second paper tests the link between dramatic temperature changes and large scale extinction events. Meanwhile, James cannot remember “that guy”, Curt does not like Oliver Cromwell, Amanda is in an abusive relationship with her cats, and we cannot stay on topic for more than 2 minutes.

Up-Goer Five (Amanda Edition):

Today our friends talk about how the change in hot and cold and places where rocks are over a very long time has changed the way things live. Or not lived. The first paper says that while we used to think that changes in the way the big rocks that stick out of the water that we live on is the most important thing for making different animals and green stuff live in different places. But it turns out that it may be changes in hot and cold that take a very long time to happen that is more important. Both things are important, but how it gets colder the more towards the top of the world you go is just a little more important. It really controls how things can live places. The other paper looks at changes in hot and cold and how that makes things die. It turns out that if it gets warmer faster, or colder faster, it makes things die. They have a real number of 5.2 bits, and it is at more than 10 bits every 1,000,000 years. It does not matter if it gets warmer or colder, it is the quick turn that matters, and the big jump in change. They say that we are already getting hot enough fast enough right now to cause lots of things to die, even if we were not killing them, which we are.

References:

Kocsis, Ádám T., et al. "Increase in  marine provinciality over the last 250 million years governed more by  climate change than plate tectonics." Proceedings of the Royal Society B 288.1957 (2021): 20211342.

Song, Haijun, et al. "Thresholds of temperature change for mass extinctions." Nature communications 12.1 (2021): 1-8.

Podcast 220 - The Bone Gnome

Sea_lamprey_(8741578394).jpg

The gang discusses two papers that look at the fossil record of fishes. The first paper looks at the ontogeny of ancient lampreys, and the second paper investigates the impact genome duplication had on the evolutionary history of teleost fishes. Meanwhile, James finds a gnome, Curt has an adorable ghost problem, Amanda appreciates good music, and we are all back on our b#ll$h!t.

Up-Goer Five (Curt Edition):

Our friends talk about two papers that look at animals that live in the water and have hard parts on the inside. The first paper looks at some of these animals which have a round mouth. These animals today are very different as kids then as grown ups. As kids they live in the ground and pull food out of the water. As grown ups they move through the water and eat other animals. This paper looks at old parts of these animals from a long time ago to see if the kids always did this. They find that these very old animals did not have kids and grown ups acting so different. This means that having the kids do something different is a thing that is new, even though people have thought that these animals have always done this.

The second paper looks at the how animals with hard parts that move through the water had the bits inside them that store how to build them get a times two. When there are more bits that store how to build them, it makes the homes in the hard parts bigger. So you can use how big these homes are in the hard parts to learn something about how many bits these animals have. Using old hard parts from old animals and a tree that shows which of the animals are close brothers and sisters to each other, they look at when changes in how big these homes in the hard parts were in the past. And since how big these homes are tells us how many bits that store how to build them they have, we can also see how these bits are changing through time. People have thought that getting more of these bits may be why there are so many of these types of animals. This paper shows that it may not be that simple. The number of bits goes up first, but the number of new animals does not go up at that time. Instead, it happens after big changes in the world. It is possible that these bits may have helped in bringing the number of these animals up, but it alone does not explain it.

References:

Miyashita, Tetsuto, et al. "Non-ammocoete larvae of Palaeozoic stem lampreys." Nature 591.7850 (2021): 408-412.

Davesne, Donald, et al. "Fossilized cell structures identify an ancient origin for the teleost whole-genome duplication." Proceedings of the National Academy of Sciences 118.30 (2021).

Podcast 219 - Brachiopod Vape Bros

Expn7526_(38827990315).jpg

The gang discusses two papers that look at examples of cohabitation and unique ecological interactions in the Cambrian. The first paper looks at multiple animals living together in a hemichordate living chamber, the and the second looks at a potential example of parasitism on brachiopods. Meanwhile, James flips a coin, Curt has to live with some consequences, and Amanda ranks things from meh to bad.

Up-Goer Five (Curt Edition):

Our friends talk about two papers that look at animals which are living together, sometimes not because both animals want that. The first paper looks at these long animals with no legs that live together. There are two different types of these long animals living the in the same spot, which is a home that looks like the ones built by the bigger of the two long animals, but the home seems to be a bit too big. Because the small long things do not have bits that could cut off parts of the bigger long thing, they think that these two animals would have lived in the same spot and been just fine. Since the homes are bigger than either animal, it means we still have to figure out why the homes are so big. It could be that the bigger long animals could be kids and the homes were built by the grown ups for the kids to live in.

The second paper looks at these small long round thing that was found on these animals with hard parts on either side which sit on the ground in the water and pull food out of the water. The animals with hard parts could have these small long round things on them or they could not. The animals with hard parts that had these small long round things were smaller than the ones that did not. The way the small long round things were put onto the animals with hard parts makes it look like they are homes for other small animals that would take the food out of the mouth of the animals with hard parts.

References:

Zhang, Zhifei, et al. "An encrusting kleptoparasite-host interaction from the early Cambrian." Nature communications 11.1 (2020): 1-7.

Nanglu, Karma, and Jean-Bernard Caron.  "Symbiosis in the Cambrian: enteropneust tubes from the Burgess Shale  co-inhabited by commensal polychaetes." Proceedings of the Royal Society B 288.1951 (2021): 20210061.

Podcast 218 - FEET!

index.jpg

The gang discusses two papers that look at trackway fossils. The first paper uses a modern study to determine how many tracks are needed to get a reasonable estimate on the trace morphology, and the second paper looks at trackways from an early tetrapod and attempts to determine the likely trace maker. Meanwhile, James has thoughts on Luigi, Amanda gives the birds the bird, Curt regrets a burn, and everyone loves Christopher Walken’s line delivery in Ripper.

Up-Goer Five (Amanda Edition):

Today our friends talk about people walking on ground that is wet and animals with four legs that also had a long back end part. The first paper looks at how many people need to walk on ground that is wet before it is enough people to make the numbers good. It also looks at how different kinds of ground and different types of wet also change the way things look. There actually does not need to be too many people walking on ground that is wet before the numbers are good. That means it is easier to do this with things that are not live anymore. The second paper looks at animals with four legs that were walking around a long time ago. The paper does a good job of figuring out just what those animals with four legs probably were, and about how they walked. They also had a long back end that dragged on the ground. That also tells us about how they walked. But there needs to be more stuff done on these animals with four legs and their walking marks, as well as their legs, before we know exactly what the back end marks mean.

References:

Logghe, A., et al. "Hyloidichnus  trackways with digit and tail drag traces from the Permian of Gonfaron  (Var, France): New insights on the locomotion of captorhinomorph  eureptiles." Palaeogeography, Palaeoclimatology, Palaeoecology 573 (2021): 110436.

Belvedere, Matteo, et al. "When is enough, enough? Questions of sampling in vertebrate ichnology." Palaeontology (2021).

Podcast 217 - In the Thick of It

Alvarezsaurus_calvoi.jpg

The gang discusses two papers with… honestly a pretty flimsy link connecting them together. The first paper looks at size shifts in the dinosaur group, Alvarezsauridae, and the other paper looks at beetle fossils preserved in a dinosauromorph coprolite deposit. Meanwhile, James finds that the third time is the charm, Curt struggles to segue, and Amanda has thoughts on ham.

Up-Goer Five (Curt Edition):

Our friends talk about two papers that are not as much the same as they had hoped. The first paper looks at a group of angry animals wear most of these animals got really big a long time ago. A few of these animals start getting small, and this paper looks at one of those groups of angry animals that gets small to try and see when and why they got small. This paper uses a study of how these different animals are sister and brother to each other and then looks at how the big these animals are and tries to see if there is a time when things start to get small. They find that these things start to get small at a time pretty late in the life of the group. This is also around the time that a lot of small animals who wear their hard parts on the outside and live in big groups first appeared. Since the angry animals have weird hands that look like they could move through the ground, it is possible that these animals got smaller and started eating these even small animals who live in big groups.

The second paper looks at a small animal that wears its hard parts on the outside that was found in shit. I have to use the word shit because it is the only word in the ten hundred most used words that can be used to tell you what this animal was found in. It was found in shit. The animal is broken up so it seems that the animal was eaten by a bigger animal who then pushed it out when that animal had a shit. This small animal is one of the best remains of one of these animals from so long ago, because the shit kept the animal parts from breaking down. Shit is a really great way to find parts of other animals because it keeps some of those parts from breaking down really well. Also, the small animals in this shit are found with other bits of green things that live in water and use sun to make food. This means that the animal which ate the small animals might have been trying to eat the green things and happened to grab a lot of those small animals who were also on the green things.

References:

Qvarnström, Martin, et al. "Exceptionally preserved beetles in a Triassic coprolite of putative dinosauriform origin." Current Biology (2021).

Qin, Zichuan, et al. "Growth and miniaturization among alvarezsauroid dinosaurs." Current Biology (2021).

Podcast 216 - Salty Tooth

Mosasaur_skull.jpg

The gang discusses two papers that look at ecological patterns in the Mesozoic. The first paper looks at ecomorphic trends in Triassic herbivorous tetrapods, while the second paper uses morphological and chemical evidence to estimate the behavioral patterns of Cretaceous mosasaurs. Meanwhile, James has ideas about electrolites, Curt has a 99% average, and Amanda manages to record an entire podcast while having vertigo (that last bit isn’t a joke).

Up-Goer Five (Amanda Edition):

Today our friends talk about where and how things live. The first paper looks at all kinds of animals with four feet that eat green things from the first part of the age of big angry animals with lots of teeth and no hair. This paper is trying to use the parts of the animal's face to see how they eat. There are different kinds of ways to eat green things, and some ways of doing things have more types of these animals with four feet than others. They also find that there are big changes that happen at some times in different groups of these animals. The second paper is really cool and looks at big angry animals with hard skin that go back to the water. This paper shows that these big angry animals, which live in water that isn't good to drink, sometimes go to places where there is more water that is good to drink. Some go back to water that is good to drink every 4 to 7 days if they live in one place, or 12 to 20 days if they live in the other place. It is possible that these big angry animals with hard skin that go back to the water might have also gone from top of the world towards the middle of the world over longer times, and back again, like animals with light bodies and no teeth and no hair, but they are not sure here, they need to look more.

References:

Taylor, Leah Travis, et al. "Oxygen  isotopes from the teeth of Cretaceous marine lizards reveal their  migration and consumption of freshwater in the Western Interior Seaway,  North America." Palaeogeography, Palaeoclimatology, Palaeoecology 573 (2021): 110406.

Singh, Suresh A., et al. "Niche partitioning shaped herbivore macroevolution through the early Mesozoic." Nature communications 12.1 (2021): 1-13.

Podcast 215 - Ostensibly a Science Podcast

96fbf705132092f9f900c42368caa071.jpg

The gang discusses two papers that are loosely connected by the fact that they include mammals. The first paper looks at the biomechanics of a type of sabre tooth cat. The second paper analyzes the stability of mammal communities in deep time. Meanwhile, James loves the fans, Amanda is hemmed in by sound, Curt tries to avoid a lawsuit, and everyone really bungles explaining a paper on what is supposedly a scientific podcast.

Up-Goer Five (Curt Edition):

Our friends talk about two very different papers that are still about things with hair that are warm. The first paper looks at some of these animals with hair that had a set of very long teeth in their mouth that look like things we use to cut people. These animals all had many different types of long teeth, but we usually thought that they might be doing a lot of the same things just because so few other animals with hair get sets of teeth that long. This paper looks at the other parts of one of these animals with long teeth and finds that it is very different from many of the other animals with long teeth. A lot of animals with long teeth could run quick for a short time, while this animal looks like it could run for long times. This animal looks like it could chase things for a longer time, while the other animals with long teeth may have surprised their food. This is cool because it means that animals may have got long teeth for different reasons.

The second paper looks at groups of animals living together and sees how those groups change over time. They are looking to see if those groups can stay more or less the same across a long time, and also what helps these groups to not change. What they find is that in the area they are looking, there are three different groups that form and more or less stay the same until they suddenly change. These sudden changes happen when the world around them changes a lot. The groups remain more or less the same though before these really big changes in the world. Also, the groups can remain more or less the same even if the animals in those groups change over time. The thing that seems to be important in keeping these groups more or less the same is how the groups are built. Groups with a lot of different jobs for animals to do seem to be better at staying more or less the same over a long time.

References:

DeSantis, Larisa RG, et al. "Dietary ecology of the scimitar-toothed cat Homotherium serum." Current Biology (2021).

Blanco, Fernando, et al. "Punctuated ecological equilibrium in mammal communities over evolutionary time scales." Science 372.6539 (2021): 300-303.

Podcast 214 - Dead Mammals

index.jpg

The gang discusses two examples where extinction may have been very important in directing the evolution of mammals through time. The first paper looks at the impact of other mammals groups on the morphology of earlier therians, and the second paper looks at how extinction could explain some of the patterns observed in the Great American Interchange. Meanwhile, James learns some things, Curt steps out, Amanda imagines the end.

Up-Goer Five (Amanda Edition):

Today our friends talk about animals with hair. The first paper talks about animals with hair, and that ideas were had a while ago about how old kinds of animals with hair just weren't as good as new kinds of animals with hair, and that the very big angry animals with lots of teeth and no hair made the animals with hair from the same time stay small and not good. But it turns out that even after the very big angry animals with lots of teeth and no hair went away the animals with hair were still all very much the same and didn't do anything fun until much longer after the very big angry animals with lots of teeth and no hair were gone. That means that the very big angry animals with lots of teeth and no hair didn't really keep the animals with hair from being any good. The other paper talks about animals with hair from the upper part of the colder area of land in the "new" half of the world (which is not new but that's the only word we can use in this stupid word thing) moved into the usually warmer lower area of land in the "new" half of the world. It talks about how upper animals with hair moved into lower areas of land, and how lower animals with hair moved into upper areas of land. However, more upper animals moved into lower areas of land. And they wanted to know why. It turns out that more animals with hair that lived in the lower part of the "new" half of the world were dying as the places changed and got colder. We used to think just that it was upper animals with hair were better at living than lower ones, but that isn't true. It's just that there was space for upper animals to move in, and they could use the area better than lower animals with hair that moved to the upper part of the "new" half of the world.

References:

Carrillo, Juan D., et al.  "Disproportionate extinction of South American mammals drove the  asymmetry of the Great American Biotic Interchange." Proceedings of the National Academy of Sciences 117.42 (2020): 26281-26287.

Brocklehurst, Neil, et al. "Mammaliaform extinctions as a driver of the morphological radiation of Cenozoic mammals." Current Biology (2021).

Podcast 213 - Bringing our C Game

041321_mt_monkeydactyl_inline1_desktop_680.jpg

The gang discusses two papers about unique adaptations in the fossil record, the first is a paper about pterosaurs that have opposable thumbs and the second paper talks about burrowing synapsids. Meanwhile, Discord is silencing James, Amanda fact checks, and Curt messes everything up…. like EVERYTHING.

Up-Goer Five (Amanda Edition):

Today our friends look at some things that make very old animals that are not close to other animals look like those other animals. First our friends talk about an animal that had a very long ring finger with long skin on it and could fly. This is a pretty early animal that had a very long ring finger with long skin on it. People have thought that maybe animals that had a very long ring finger with long skin on it lived in trees. A new animal was found that had a first finger that can move across from the others, like people have on their hands. This means that this animal that had a very long ring finger with long skin on it could grab onto trees and hold them, which means they probably did live in trees. The second paper our friends look at looked at very old animals that had hair. Some of these are not even really animals that have hair like the ones that live today, because the three hard pieces inside the ear are not all the way in there yet. But these animals that had hair had some things that are like each other, because they had very big hands with heavy hard pieces in them that means they move in the ground. They push the ground around and are found under it. These are the oldest kinds of animals with hair that do this, and they also do some strange things with their hard bits that make up their back. This might be a thing that animals with hair living under the ground just do.

References:

Zhou, Xuanyu, et al. "A new darwinopteran pterosaur reveals arborealism and an opposed thumb." Current Biology (2021).

Mao, Fangyuan, et al. "Fossoriality and evolutionary development in two Cretaceous mammaliamorphs." Nature (2021): 1-6.