Podcast 221 - Ramble On
/The gang discusses two papers that look at patterns of speciation and extinction and relate those patterns to shifts in climate. The first paper looks at how both plate tectonics and climatic changes have contributed to shifts in provinciality, and the second paper tests the link between dramatic temperature changes and large scale extinction events. Meanwhile, James cannot remember “that guy”, Curt does not like Oliver Cromwell, Amanda is in an abusive relationship with her cats, and we cannot stay on topic for more than 2 minutes.
Up-Goer Five (Amanda Edition):
Today our friends talk about how the change in hot and cold and places where rocks are over a very long time has changed the way things live. Or not lived. The first paper says that while we used to think that changes in the way the big rocks that stick out of the water that we live on is the most important thing for making different animals and green stuff live in different places. But it turns out that it may be changes in hot and cold that take a very long time to happen that is more important. Both things are important, but how it gets colder the more towards the top of the world you go is just a little more important. It really controls how things can live places. The other paper looks at changes in hot and cold and how that makes things die. It turns out that if it gets warmer faster, or colder faster, it makes things die. They have a real number of 5.2 bits, and it is at more than 10 bits every 1,000,000 years. It does not matter if it gets warmer or colder, it is the quick turn that matters, and the big jump in change. They say that we are already getting hot enough fast enough right now to cause lots of things to die, even if we were not killing them, which we are.
References:
Kocsis, Ádám T., et al. "Increase in marine provinciality over the last 250 million years governed more by climate change than plate tectonics." Proceedings of the Royal Society B 288.1957 (2021): 20211342.
Song, Haijun, et al. "Thresholds of temperature change for mass extinctions." Nature communications 12.1 (2021): 1-8.